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Abstract--Davis n aL (1976) have shown that if two solid spheres move together in an axisymmetric Stokes 
flow, then provided they are sufficiently close, a body of fluid becomes trapped between the spheres. Here it is 
shown how the small eddy motions induced in this trapped fluid are significantly disrupted when one sphere 
moves relative to the other. 

1. INTRODUCTION 

Although Stokes flow cannot separate from a solid sphere in isolation, Davis et al. (1976) 
showed that if the centres of two equal spheres are less than 3.57 radii apart in an axisymmetric 
flow, then viscous wakes develop and, as the spheres are placed closer together, toroidal 
vortices are successively established in a nested manner around the axis of symmetry. A similar 
result holds for unequal spheres, the analysis being a special case of what follows in this paper. 
The practical significance lies in the outermost and strongest eddy whose outer boundary 
separates fluid in the external flow from the body of fluid which becomes trapped between the 
spheres. Since the boundaries of the eddies are determined by the zeros of exponentially small 
terms, the structure described above is, except for spheres in contact, difficult to reproduce 
experimentally. This paper examines the effect on the eddy structure of one sphere moving 
relative to the other, both slowly enough and at sufficient distance for the quasi-static 
approximation described by Brenner (1961) and Rushton & Davies (1973) to be valid. At small 
distances, the method of matched asymptotic expansions employed by O'Neill & Majumdar 
(1970) is appropriate. 

As in the previously mentioned work, axes are fixed with respect to the sphere from which 
separation is sought. Sphere II is assumed to move at speed ¢ against a uniform stream of unit 
speed and towards sphere I which is at rest. Separation on sphere I is delayed or enhanced 
according as • is positive or negative. In the former case, it is found that for large enough 
(0.05 for equal spheres), separation occurs not through a toroidal vortex forming on sphere I, 
but because the fluid trapped instantaneously around sphere II has spread as far as the 
stationary sphere. 

It shouM be noted that in practical applications, ~ is likely to be related to other physical 
variables. However the available formulae for this dependence lose accuracy as the spheres 
approach each other, which situation is not yet fully understood. This paper, in which the 
spheres are about a radius apart, is hopefully a contribution to its understanding. 

2. STATEMENT AND SOLUTION OF THE PROBLEM 

TWO rigid spheres are placed in a steady stream of infinite incompressible viscous fluid of 
constant density and viscosity, so that the line of centres of the spheres, one of which is held at 
rest, is parallel to the direction of the stream. 

Choosing the line of centres to be the axis of cylindrical polar coordinates (r, 0, z), 
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bispherical coordinates are defined by 

c sin 77 c sinh 
r = cosh ~:- cos 77' z = cosh ~:- cos n " 

[2.1] 

The external fluid region is then -~:2 -< s r -< ~:l, 0-< ,7 -< ~r, where, with the spheres I and II having 
radii l and b respectively, 

c = sinh srl, b = c cosech s~2 = sinh ~:dsinh ~:2. [2.2] 

The distance D between the centres of the spheres is given by 

D = c(coth st1 + coth st2) = sinh (srl + st2) 
sinh st2 ' [2.3] 

and the coordinate values srl, ~:2 are obtained directly from b, D by the equations 

D 2 + l - b  2 D 2 - 1 +  b 2 
cosh ~:l = 2D , cosh st2 = 2bD 

Evidently the fluid velocity has cylindrical components (u, 0, w) which are independent of 0 
and given by 

u = - - -  w . . . .  [2 .4 ]  
r az '  r ar 

where the stream function $ satisfies in the Stokes approximation the equation 

[02 1 0 02 \2 
A4Cj = k~--~- r ~ + ~ ~ )  * = 0.  [2.51 

Taking the stream to be in the negative z-direction, the condition at infinity is 

1 ¢1 ~ ~ r 2 as r: + z 2--> oo. [2.6] 

Zero velocity on sphere I requires that 

a¢, 
$ = ~ -  = 0 at  ¢ = ¢1 [2 .7 ]  

whilst the no-slip condition on sphere II, which moves with speed • in the positive z direction, 

yields 

~+1 ~ 0 (~b+~e r2 )=  0 at ~:=-~:2. [2.8] 

The appropriate solution of [2.5] is of the form 

C2(1 0 -2 ) 
c2(2 cosh ~:- 20-) -3/2 ~ Un(~) V,(0-) 

¢1 = 2(cosh ~:- 0-)2 + t 

= C2(2 c o s h  ~ - 20-)-3/2X [2.9] 
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where 

o- = cos 7, V.(o-) = P.-~(o-)- P.+~(o-) 

U,(O = W.0,) = A. cosh (18. - 1)~,+ B. sinh (18. - 1)1, + C. cosh (18. + 1)~, +D. sinh (18. + 1)1, 

Employing the expansion, valid for ~# 0: 

4(1 o -2 ) 
- ~ K.(O V.(o-) 

(2 cosh ~ -  2o-) 112 - 1 

where 

2 (18"2 - ~) e-~'l~l(18, sinh [~[ cosh 
K.(O = 18.(182_ l) + ¢)' 

the four conditions [2.7], [2.8] can be written 

W.(q) + ~ K.(¢0 = 0, 

W'.(q) + ~ K'(¢~) = O, 

W,(-q) + ~ (1 + ~)K.(-¢2) = 0, 

W'(-q) + ~ (1 + OK'(-¢2) = 0. [2.10] 

By addition and subtraction, these four equations split into disjoint pairs which determine, for 
each n > 1. the coefficients A., C, and Bn, D.. In the particular case s = ,  = 0, the coefficients 
given by Davis et al. (1976) are, except for a scaling factor, recovered. The extension of that 
paper to unequal spheres is obtained by setting ~ = 0 with s # 0. 

3. SINGLE SPHERE MOVING AGAINST STREAM 

Since we are considering what happens to the flow pattern as sphere II approaches sphere I, 
it is of interest to know what it looks like when the spheres are far apart and in particular what 
flow pattern exists instantaneously around a single unit sphere moving against the stream. In 
terms of spherical polar coordinates (R, O, 0) with origin at the centre of the sphere, the 
operator A 2 of [2.5] has the form 

A2= 0 2 +sinO 0 1 0 

and the stream function is given by 

sin 20 
~b = ~ [(R - 1)2(2R + 1)-  e(3R 2-  1)] (R -> 1). [3.11 
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Since Stokes flows are reversible, the minus sign of a negative ~ can be accounted for by 
changing the direction of the basic streaming flow. Then sphere II always moves towards sphere I 
but does so with or against the stream according as ~ is negative or positive. The instantaneous 
flow patterns determined by [3.1] are illustrated in figure I. Defining Ro(~) to be the value of R 
at which ~ = 0 for ~ > 0, table 1 shows how R0 is sensitive to small changes in ~ from 0. 

Table 1. 

0.03 0.05 0.1 0.2 
Ro I. 167 1.225 1.347 1.550 

This suggests that the introduction of even a small relative velocity is likely to have consider- 
able impact on the eddy structure described by Davis et al. (1976). 

• <0 • >0 

Figure 1. The instantaneous flow patterns past a single moving sphere. 

4. SEPARATION OF THE FLOW FROM THE STATIONARY SPHERE 

Substituting [2.1], [2.9] into [2.4], the axial velocity is given by 

1 0o 

= -1 + cosh 2 s¢ ~ (-1)"/3, U, (~) . [4.1] w(~  8) 

Separation from sphere I begins at ~ = zr when the derivative of the axial velocity at ~ = ~:l 
changes sign. The condition (&w/&~)(~, s) = 0 implies, on substituting [2.9]: 

~ (-1)n~. [ W'~(q) ÷ 2 K'~(~,)]=O 

which, after eliminating the coefficients An, Bn, Cn, Dn can be written 

(--1)n~n Q 3n2-1) { e~2 sinh ~:l - e-a"~' sinh ~:2 + (1 + " ) [ e ~ ' ~ ' s i n h  2B.q + "n sinh 2qSinh ~2- e-~'~2 sinh ~:'] 

e '°~: si~,~~ ~l + e -"~' sinh s¢2 - (1 + ~)[e a.~, sinh s¢2 + e -~2 sinh sel]~ + 0. 
sinh 2//nq -/~. sinh 2q J 

Applying the usual Watson transformation (Davis & O'Neill 1977), dividing by sinh ~:l sinh s¢2 in 
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virtue of [2.2] and retaining only the leading residue terms, this becomes 

r' 
e Jo cosh ~-y (sin 2yq + y sinh 2q a sin 2yq - y sinh 2q J dy 

Fcr,(~r 2 + q2)~(2 + e)[sin ~1~1 + b sin ~1-~ ~2] + i, [cos crff' 
¢r / .  t L zq ___--zq -I re.L-..-_ -~--q - b 

+ -~q Re L cosh ~ (2q cos or, + sinh 2q) 

cos 2q J 

+ sin ~21 + i, [cos T~ + b cos ~'ff21}] 
L zq zq _1 2q 2q J ~ O. 

,/i-,.r i J cosh ~ (2q cos ~'l - sinh 2q) 
[4.21 

where, as defined by Davis & O'Neill (1977), or1 and rj are respectively the dominant complex 
roots of 2q sin z - z sinh 2q = 0 in the first quadrant. The asymptotic approximations: 

~"~(2m-~)~r+I i - (2ml-~)Tr l  IOge[(4m-1)wsinh2q]2q J 

I 1 ] log~ [(4m + 1 Ir sinh 2q 
Tm~(2m+~)Tf'+" i (2m + ~) "n" ) ~ ]  

can be used for iterative computation of trl, ¢1 for various q and some values are listed in table 
2. A much more comprehensive list for the similar equations a sin z - z sin a = 0 is given by 
Wakiya (1975). The factors (2+ e) and • in [4.2] can be respectively identified as the sum and 
difference of the sphere velocities relative to the stream. Table 3 shows solutions q of [4.2] with 
corresponding D (given by [2.3]) for various values of ~ and b. The • = 0, b = 1 solution is that 
given by Davis et al. (1976) and is included for completeness. Note that although the geometry 
of cases b = 0.5, 2 is similar, D is always measured in terms of the radius of sphere I and so 
there is a scaling factor of 2 to be taken into account when assessing the list of values of D for 
b = 0.5, 2. In particular, for e = 0, it can be observed that since 2.617x 2 > 5.131, separation 

Table 2. 

2q o'l ~'1 

0.2 4.21104 + 2.257%i 7.49686 + 2.77559i 
0.4 4.20700 + 2.27955i 7.49443 + 2.79620i 
0.6 4.20035 + 2.31516i 7.49041 + 2.83019i 
0.8 4.19118 + 2.36427i 7.48488 + 2,87707i 
1.0 4.17963 + 2.42621i 7.47791 + 2.93617i 
1.2 4.16589 + 2.50021i 7,46960 + 3.00675i 
1.4 4.15014 + 2.58544i 7.46005 + 3.08796i 
1.6 4.13260 + 2.68104i 7.44938 + 3.17897i 
1.8 4.11351 + 2.78619i 7.43771 + 3.27892i 
2.0 4.09310 + 2.90008i 7.42516 + 3.38701i 
2.2 4.07163 + 3.02196i 7.41183 + 3.50247i 
2.4 4.04932 + 3.15111i 7.39784 + 3.62460i 
2.6 4.02640 + 3.28689i 7.38329 + 3.75275i 
2.8 4.00309 + 3.42868i 7.36827 + 3.88635i 
3.0 3.97958 + 3.57596i 7.35288 + 4.02487i 
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Table 3. 

b = 0.5 b = 1.0 b = 2.0 

2q D 2q D 2q D 

-0,2 2.552 2.775 2.436 3,675 2.378 5,171 
-0.1 2.482 2.697 2.402 3,624 2.368 5.151 
-0.05 2.443 2.655 2.384 3.597 2.363 5.141 

0 2.408 2.617 2.367 3.572 2.358 5.131 
0.01 2.363 3.566 
0.03 2.356 3.556 
0.05 2.369 2,577 2.349 3.546 2.352 5.120 
0.1 2.327 2.534 2.330 3.518 2.347 5.109 
0.2 2.229 2.439 2.291 3.462 2.336 5.086 

begins first on the larger sphere as the two are placed closer together. This is in agreement with 
the results of Davis & O'Neill (1977) for the sphere at rest near a plane. 

Table 3 shows that D is a decreasing function of 6 which indicates that a receding sphere 
has a sucking effect which encourages the fluid to separate from the stationary sphere whilst an 
approaching sphere has a squeezing effect which tends to suppress this separation. Alter- 
natively, interpreting negative ~ as a reversal of the basic flow, the fluid is deflected towards or 
away from the axis ~/= ~r according as sphere II approaches sphere I against or with the 
stream. Further, it is observed that the smaller the value of b, the more rapidly does D change 
with ¢. Indeed there is an ¢ of ~0.07 for which separation occurs at exactly the same 

geometry in the b = 0.5, 2 cases. Here the squeezing effect of the small sphere approaching the 
large sphere is sufficiently greater than that of vice-versa as to exactly cancel the fact that when 

both spheres are at rest, separation occurs on the larger sphere at greater spacing than for the 
smaller sphere. 

The dependence of D on b and E is at variance with what might have been anticipated from 
Section 3. For a single sphere with • > 0, a body of fluid is essentially trapped between R = 1 
and R = Ro(~). When the sphere moves against the stream towards a sphere at rest, although 
not strictly dynamically equivalent, one might expect the moving sphere to have the effect of a 
larger solid sphere, enhancing the onset of separation on the fixed spheres. The results of table 
3 show this type of physical argument to be erroneous. However, a question which emerges 
from this consideration of the single sphere is whether, for ¢ > 0, separation occurs on sphere I 
with the formation of a toroidal eddy as for the ~ = 0 case (Davis et al. 1976) or because the 
body of fluid effectively attached to sphere II has spread to the surface of sphere I. Evidently 
the former possibility will occur for small enough • whilst it can be anticipated that above 
a critical value of ~, the latter will be the case. Further information can be obtained by 
considering the axial velocity distribution when separation begins, i.e. when q = q0(~, b), a 
solution of [4.2]. 

5. THE AXIAL VELOCITY DISTRIBUTION BETWEEN EQUAL SPHERES 

In the symmetric case (s = 0), the axial velocity distribution, given by [4.1] is 

w(~:, 0) = - 1 + cosh ~ ~: ~ ( -  1)n~n W~ (~:) [5. l] 
I 

with ~ = ~2 = q in conditions [2.10]. These yield the equations 

( l /  An cosh (/in - l)q + Cn cosh (//n + 1)q = - 1 +~ • Hn e-°'q(//~ sinh q + cosh q) 

1 
Bn sinh (//~ - 1)q + D~ sinh (/3~ + 1)q = ~ ~H~ e-°~q(/in sinh q + cosh q) 
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(/3,-  1)A, sinh (/3,-  1)q + (/3, + I)C, sinh (/3, + l)q = (1+  ~ e ) H ,  e-°.q(~, 2 -  1)sinhq 

1 
(/3, - I)B, cosh (/3, - 1)q + (/3, + 1)D, cosh (/3, + l)q = - ~ d-/, e-°.q(/3, z -  1) sinh q 

where 

2 1 

The algebra is simplified by writing IV, in the form 

W,(O = (a ,  + C,) cosh/3,f cosh f - ( a ,  - C,) sinh/3,f sinh 

+(B, + D,) sinh/3,~ cosh {~- (B, - /9 , )  eosh/3,{~ sinh {~ 

where the co¢tiieients are given by 

(A, + C,)(sinh 2/3,q +/3, sinh 2q)= - (1 + ~ e)/-/,(2/t, z sinh i q + 1 - e  -20'' +/3, sinh 2q) 

( A . -  C.)(sinh 2O.q +/3. sinh 2q)= - (1 + ~ e )  H d3. (eosh 2q - e  -:°." +/3. sinh 2q) 

1 2 2 e -2s.q (B. - D.)(sinb 20.q -/3. sinb 2q) = ~ EH.(2O. sinh q + 1 + +/3. sinh 2q) 

(B. - D.)(sinb 2/3.q -/3. sinh 2q) = ~ d-/.0.(cosb 2q + e -2s.q +/3. sinh 2q). 

Substituting into [5.1] and proceeding like Davis & O'Neill (1977) with a Watson trans- 
formation, it eventually follows that 

3,re [2(q - 0 cosh 2q - sinh 2q + sinh 2~] 
w(~, O) seth ~ ~ ~ 16 2q cosh 2q - sinh 2q 

2 1 

f ;  /Y + 4'~ + • ~,~--~] [(cosh q cos y~ - y sinh q sin YOY sinh (q - ~) 

sech ,ry dy 
- (cosh ~ cos yq - y sinh ~ sin yq) sin y(q - ~)] (sin 2yq - y sinh 2q) - ¢r(2 + e)Re 

ro-. (,_oos:.°.:s"":<,)} 
{ 0.12 + q2 ~ L2q \ 2q / 2q z 

'l~ cosh \-~-q ) (sinh 2q + 2q cos ai) 

"/1"t[///I 

(l+oos.,- si.h' .)] ( ~.12 + q2 \ L2q 
- (~ -~-A 

cosn ~-~-q } (2q cos ~'! - sinh 2q) 

[5.2] 
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after again retaining only the dominant residue terms. In the particular case E = 0, [5.2] is 
equivalent to equation [4.18] given by Davis et al. (1976). 

Figure 2 shows, for various ~, w(~:, 0) at the onset of separation on sphere I, i.e. when 
q = qo(¢, 1). Evidently for ~ less than approx 0.05, separation occurs due to the formation of a 
toroidal eddy on sphere I as happens when both spheres are at rest. Meanwhile, for greater ¢, 
the streaming flow separates from sphere I when the body of fluid trapped around sphere II 
spreads to the surface of the other sphere, 

I 
-q 

( 

004 

= 0 . 0 5  
-o.oz 2q =2.349 

I 

q 

w 

006 

q 

Figure 2. The axial velocity w(~:, O) at the onset of separation on sphere I. 

o) q>qo b) qj < q < q o  

j 

C) q < q~ 

Figure 3. Typical flow patterns past equal spheres for (a) q > q0, (b) q= < q < qo and (c) q < q,. 
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As q is reduced for a given negative •, the growth of the eddy is considerably influenced by 
I•l, being limited to within 60% of the gap between spheres at • = -0.01, 20% at e = -0.03 and 

1% at • = -0.05. 
As q is reduced for a given • between 0 and 0.05, the eddy grows and joins up with the body 

of fluid surrounding sphere II when q = q t ( • ,  I) ,  say.Typical instantaneous flow patterns are 
illustrated in figure 3. As • increases from 0 to -0.05, 2q1(•, 1) increases from 2.109 (given as 
2a, ÷ by Davis et al. (1976)) through 2.286 at • = 0.03 until it coincides at 2.35 with 2qo(•, 1), which in 
the meantime has decreased from 2.367. 

For • greater than 0.05, the instantaneous patterns for q> and <q0(~, I) are essentially those 
of figure 3(a), (c) respectively. 

This section has considered equal spheres in order to keep the algebra within reasonable 
bounds. Similar results clearly hold for b~ 1, the principal conclusion being that the eddy 
structure present when the spheres are at rest is quickly destroyed by the introduction of 
relative velocity. Indeed, since the stream function changes sign on crossing from the main- 
stream to the primary wake and then, if it exists, to a secondary wake, it is evident from [2.8] 
that, even if • is small enough for the quasi-static approximation to remain valid, a secondary 
wake cannot, for any • > 0, form on sphere II although it may do so on sphere I. (Similarly, for 
any • < 0, a primary wake cannot attach to sphere II). Thus, supposing that two wakes are 
formed in the stationary situation described by Davis et al. (1976), a small increase of • from 
zero causes the primary wake to wrap around sphere II, making the secondary wake detach 
from this sphere. 

It should be emphasised again that the flow patterns of figures 1 and 3 are instantaneous and 
therefore do not represent actual paths of particle motion. 
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